NEW ! Hybrid Karl Fischer Moisture Titrator [MKH-700]

KYOTO ELECTRONICS Manufacturing Co., Ltd.

•1

KAM

Table of contents

- Principles and Features of the new function (Hybrid method)
- Principles and Features of the new function
 (Factor measurement of reagent by electrolysis)

•2

- Structure and Features of the new cell
- > Applications

KEM

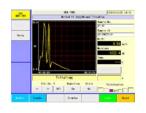
KEM

New function!

Hybrid method

Factor measurement of reagent by electrolysis

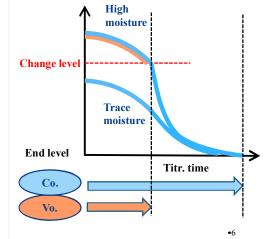
•4


Features of Hybrid method

Can measure sample of high moisture and trace moisture

with high accuracy in a short period of time.

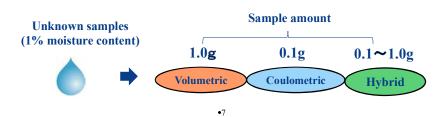
- Volumetric method is suitable for high moisture samples (1% or more)
- Coulometric method is suitable for trace moisture samples (ppm order)


⇒ Hybrid method highlights advantages of both methods and covers disadvantages.

KEM

Principle of Hybrid method (Patent pending)

•5

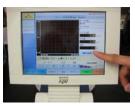

Hybrid method swiftly performs both Volumetric and Coulometric methods in parallel until the moisture content reaches a certain level. Once the moisture content goes below a certain level, measurement will be performed with Coulometric method.

Advantage of Hybrid method

No worry about sample volume with "Hybrid method"

According to the amount of moisture, the method automatically switches from the parallel measurement of Volumetric and Coulometric methods.

\Rightarrow **F**Hybrid method **J**

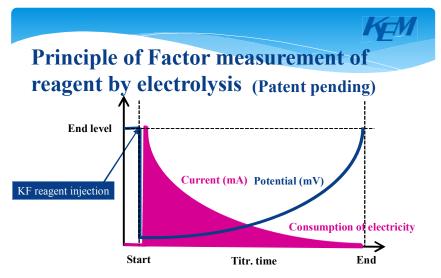


Features of Factor measurement of reagent by electrolysis

No need to use pure water, factor measured easily by pressing a button. Factor measurement of Karl Fischer reagents is performed with water standard in the "Volumetric method".


•8

⇒ You can automatically perform factor measurements by electrolysis without using pure water.



KEN

Principle of Factor measurement of reagent by electrolysis (Patent pending)

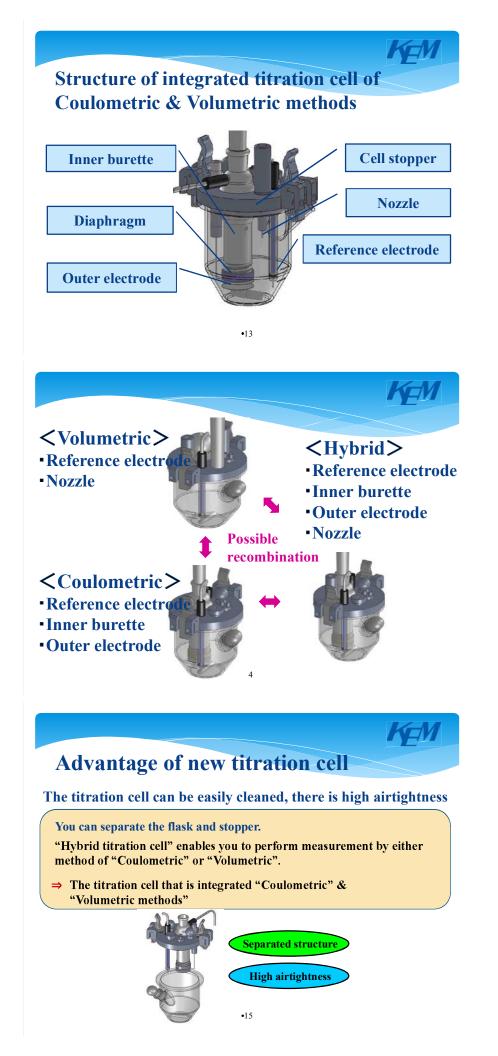
The current flow in a direction opposite of the Coulometric titration, generates the iodine ion from iodine in the anolyte.

The factor of the KF reagent is injected, can be determined from the amount of electricity used for Back Coulometric titration. ⇒ Automatic

•10

Advantage of Factor measurement of reagent by electrolysis

You can automatically perform factor measurements by electrolysis without pure water.


Avoid errors due to weighing operation, since not to use pure water.

Reducing the work effort by Automatic measurement by pressing a button.

⇒ Factor measurement of reagent by electrolysis

Specification	of MKH-700
---------------	------------

Coulometric Range Precisio	Range	Water content	10μg ~ 300mgH ₂ O
	Precision	RSD	less than 0.3%
		Display resolution	0.1µg
Volumetric B	Range	Water content	100µg∼500mgH ₂ O
	Burette precision	Volume	10mL
		Discharge precision	0.015mL
Hybrid	Range	Water content	10μg ~ 500mgH ₂ O
	Precision	RSD	less than 0.3%
		Display resolution	0.1µg
Electrolysis factor	Range	KF Reagent	Reagent factor from 1 to 5
	Precision	RSD	less than 1.0%

•16

<image><image><image><image><image><image><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text>

Thank you